
The essentials of the SAT 2003 competition

Daniel Le Berre1 and Laurent Simon2

1 CRIL, Université d’Artois,
Rue Jean Souvraz SP 18 – F 62307 Lens Cedex, France

leberre@cril.univ-artois.fr
2 LRI, Université Paris-Sud

Bâtiment 490, U.M.R. CNRS 8623 – 91405 Orsay Cedex, France
simon@lri.fr

Abstract. The SAT 2003 Competition ran in February – May 2003, in
conjunction with SAT’03 (the Sixth Fifth International Symposium on
the Theory and Applications of Satisfiability Testing). One year after the
SAT 2002 competition, it was not clear that significant progress could
be made in the area in such a little time. The competition was a suc-
cess – 34 solvers and 993 benchmarks, needing 522 CPU days – with a
number of brand new solvers. Several 2003 competitors were even able
to solve within 15mn benchmarks remained unsolved within 6 hours by
2002 competitors. We report here the essential results of the competi-
tion, interpret and statistically analyse them, and at last provide some
suggestions for the future competitions.

1 Introduction

Organizing a competition is a large effort, made by the whole community, both
for submitters and organizers. It is thus essential to ensure that this effort is
keeping worthwhile for the community. Clearly, such an event is keeping the
community excited and allows a good visibility of the SAT field outside its own
frontiers. For the second edition of the competition, the challenges were to bring
up new solvers, to measure progress made since last year (positive if possible!)
and, more important, to identify new (good) techniques and new challenges for
SAT solvers.

The competition was a success in terms of submissions, with 17 benchmarks
submitters (benchmarks or generators) and 21 solvers submitters. 34 solvers
entered the contest and we selected 993 benchmarks, partitioned into 3 categories
more or less equally distributed. The aim of this paper is to analyze the good
(and bad) points of the competition, to fairly report the performances of solvers
and emphasizes what we think was (or was not) a success, in terms of results and
progress. The paper is organized as follows: in a first part, after recalling the main
rules of the contest, we present the solvers, the benchmarks and the results of
the contest identifying the winners1. Then, we analyse the first phase results and
1 Due to the lack of space, we cannot report here exhaustive results. All results are

exhaustively available on the competition web site

finally we discuss SAT2003 competition issues and propose some improvements
for the next competition. We think that the competition is now mature enough to
evolve in such way that it can fulfill its three fundations principles: motivate the
field, identify new benchmarks and techniques and experimentally study solvers
behavior.

1.1 Competition rules

The rules were available a few months before the competition started on the
competition website. Briefly, the competitions runs in two phases. The idea is
to use the first phase as a way to identify the best solvers and the hardest
benchmarks for each categories, in order to use more time for the best solvers on
the hardest benchmarks in a second phase. The first phase is thus important to
provide exaustive empirical results for analysis, while the second one is providing
more limited results mainly dedicated to identify challenging benchmarks and
award both solvers and benchmarks.

Like last year, we used the notion of series: benchmarks were partitionned
into 3 categories (Industrial, HandMade, Random), then in series. The idea of
a series was to group together benchmarks that are similar (same generator or
same kind of problem, ...) to be able to identify solvers that can solve a wide
variety of different benchmarks. A series was considered as solved if at least one
benchmark in the series was solved. The solvers were ranked after the first phase
according to the number of series and the total number of benchmarks solved.
From those anonymized rankings, the competition judges, John Franco, Hans van
Maaren and Toby Walsh (a new feature of the SAT2003 competition), decided
which solvers should enter the second phase for each category. Note that only the
best variant of the same solver was elligible for the second phase (which is also
a new feature of the SAT2003 competition). After the second phase the winner
was the solver that solved the greatest number of benchmarks. The competition
awarded 6 solvers (3 categories of benchmarks in which we awarded the best
complete solver (answers SAT+UNSAT) and the best solver that answered SAT
(Complete + Incomplete solvers) and the smallest unsolved SAT (resp.UNSAT)
benchmark. If a solver answered UNSAT on a proved (checked by a certificate)
SAT instance, then that solver was declared “buggy”. During the conference, we
presented buggy solvers as hors-concours solver and took only into account their
SAT answer (because SAT answers are always checked with the certificate). For
this report, we launched corrected versions of the buggy solvers so we report all
their answers.

We also wanted this year to be as transparent as possible for submitters.
During the whole process of the competition, solver submitters were able to
check almost lively the progress of their own solvers. Results are available via
the web, in a dynamic HTML and a raw format, which allows anyone to make
its own analysis of the competition data.

From a practical viewpoint, the competition ran on two clusters of Linux
boxes. The first one, from the “Laboratoire de Recherche en Informatique” (LRI,
Orsay, France) was composed of 15 Athlon 1800+ with 1Gb of RAM. The second

one, from “Dipartimento di Informatica Sistemica e Telematica” (DIST Genoa,
Italy), was composed of 8 PIV 2.4GHz with 1Gb of RAM. Both clusters were
using RedHat Linux 7.2. During the first phase, industrial and handmade cate-
gories ran on LRI’s cluster while most of the random category ran in Italy. All
the second phase was running on LRI’s cluster (while the QBF evaluation was
running in Italy[14]).

2 The competitors

2.1 Solvers

Solver submission closed on February 14th but the competition really started one
month later (in order for us to check input/output compliance and to receive
corrected versions of the non compliant solvers). Late submissions were accepted
hors-concours, if they complied with input/output requirements. Those solvers
entered the first phase, which allowed them to compete with current state-of-
the-art SAT solvers, without being awardable. The detailled list of the 34 solvers
participating to the competition per category follows. Let’s begin with the de-
scription of the 28 complete non randomized solvers:

berkmin (release 561 and release 62) from Eugene Goldberg and Yakov Novikov [10].
Berkmin62 was awarded “best solver on satisfiable handmade benchmarks” at
SAT’02 competition.

bmsat (BlueMoonSAT, hors concours) from Xiaowei Xu.
compsat (release 0.5) from Armin Biere. A bug was discovered during the contest.

We report here the fixed version, compsat-fixed, as a hors-concours solver.
farseer (release 1.00), from Martin Girard.
forklift from Eugene Goldberg and Yakov Novikov.
funex (release 0.2) from Armin Biere.
jerusat (release 1.1 va, vb, vc) from Nadel Alexander [2].
jquest2 from Inês Lynce and João Marques Silva [18].
kcnfs from Gilles Dequen and Olivier Dubois [8, 7].
limmat (release 1.3) from Armin Biere. Limmat was awarded “Best solver on satisfi-

able industrial benchmarks” at SAT’02 competition.
lsat (release 1.1) from Richard Ostrowski, Bertrand Mazure and Lakhdar Sais [22].

lsat (v 1.0) participated to the SAT’02 competition.
march sp/tt/xq from Mark Dufour, Marijn Heule, Joris van Zwieten and Hans van

Maaren. marchxq was found buggy. We report here the results of marchxq-fixed,
the fixed version, as a hors-concours solver.

oepir Oepir (release 0.2) from Johan Alfredsson.
oksolver (hors concours) from Oliver Kullmann [13]. Oksolver was awarded both “best

complete sat solver on random benchmarks” and “best solver on satisfiable random
benchmarks” at SAT’02 competition. oksolver was not submitted to the competi-
tion but it is entering the competition as the winner of the previous competition.
We also report its performances on all categories.

opensat (release 0.44) from Gilles Audemard, Daniel Le Berre and Olivier Roussel
[3].

satnik from Niklas Sörensson [9, 6].

sato (release 3.4) from Hantao Zhang [28].
satzilla (release 0.9, v1 v2 v2-fixed) (v2s are hors concours) from Kevin Leyton-Brown,

Eugene Nudelman, Galen Andrew, Carla Gomes, Jim McFadden, Bart Selman and
Yoav Shoham [16, 15]. Authors asked us to consider a new version of satzilla2. They
discovered, during the contest, that satzilla2 had bugs in its learning phase, that
led to wrong choices of solvers during the contest. The new version is refered as
satzilla2-fixed.

satzoo (release 0.98 v0 v1) from Niklas Een [9].
tts (ternary tree solver, release 1.0, hors concours) from Ivor Spence.
zchaff from Yinlei Yu and Lintao Zhang [21, 29]. zchaff was awarded best complete

solver for both industrial and handmade categories at SAT’02 competition.

The 2 complete randomized solvers were:

siege (hors concours) from Lawrence Ryan.
xqinting (release 0.1) from Xiao Yu Li, Matthias F. Stallmann and Franc Brglez.

The 4 incomplete solvers were:

amvo from Sean Vogt and Andrew Machen.
qinting (release 1.0) from Xiao Yu Li, Matthias F. Stallmann and Franc Brglez [17].
saturn (release 2) from Steven Prestwich. [23].
unitwalk (release 0.981) from Edward Hirsch and Arist Kojevnikov [11].

2.2 The benchmarks

We had 17 submitters, but a lot of benchmarks were submitted by the same
people (BMC from IBM, generators for random/structured formulae). We also
reused all SAT’02 challenges (except some from SAT’02 random challenges be-
cause there was too many of them). We tried to equilibrate the cpu effort on
categories: Industrial with 323 benchmarks in 45 series, Handmade with 353
benchmarks in 34 series, Random with 317 benchmarks in 30 series. Like last
year, we shuffled all the benchmarks to avoid syntactical recognition of bench-
marks by solvers. Regarding random and handmade benchmarks, we only consid-
ered 3 benchmarks per point. That means that once we fixed all the parameters
for the generator, we generated 3 (and only 3) benchs with 3 different seeds.
The new benchmarks were, for the industrial category (we have a total number
of 323 benchmarks with, on average, 42703 variables, 163947 clauses and 452283
literals):

hard eq check submitted by E. Goldberg, 16 benchmarks, 1 serie.
addm Submitted by J. Kukula, 6 benchmarks, 1 serie: equivalence check of two ran-

domly structured adders with multiple addends.
li-exam, test Submitted by R. Li, 12 benchmarks, 2 series: formulated from unit

covering problem of logic minimization of logic ircuit benchmark test4
ferry, gripper, hanoi Submitted by Maris, 24 benchmarks, 3 series: based on TSP

(tunable satplan). A DIMACS generator for planing problems in PDDL format
l2s Submitted by V. Schuppan 11 benchmarks, 1 serie: Bounded model checking of

Bwolen Yangs collection of benchmarks for SMV in conjunction with a method to
convert liveness to safety.

zarpas Submitted by E. Zarpas: a lot of (large) BMC formulas. We selected only a
subset of 223 benchmarks in 25 series.

For the handmade category (we have a total number of 353 benchmarks having,
on average 3233 variables, 37355 clauses and 154485 literals):

sgi Submitted by C. Anton: Subgraph isomorphisms, 120,benchmarks, 8 series.
graphs Submitted by R. Bevan: Formulas based upon various graphs as first described

by Tseitin in 1968, 56 benchmarks, 7 series. Graphs used include margulis graphs,
modified margulis graphs and various other well known graphs (i.e. hypercube).

quasigroups with holes Submitted by C. Gomes, 19 benchs, 2 series.
chesscolor Submitted by P. Lardeux, 5 benchmarks, 1 series: These benchmarks en-

code an original chessboard coloring problem. A n2 chessboard must be colored
with k colors such that the four corners of every rectangles included in the chess-
board are not all of the same color.

multLin, mm Submitted by K. Markstrom, 17 benchmarks, 1 series: CNFs coding
various instances of fast matrix multiplication, both for square and non-square
matrices. The encoding of the problems is intented to be efficient.

genurq Submitted by R. Ostrowski, 10 benchmarks, 1 series: Modified genurq prob-
lem, all satisfiable.

clusgen Submitted by A. Slater9 benchmarks, 3 series: Randomly generated clustered
3SAT problems.

hwb Submitted by T. Stanion, 21 benchmarks, 1 series: The generator build two
different circuits computing the hidden weighted bit function and combines them
into an equivalence checking problem.

We mainly restricted the random catgory benchmarks that looked like uniform
random benchmarks. We have 317 benchmarks with on average 442 variables,
4164 clauses and 25401 literals:

balanced, hidden Submitted by C. Moore, 111 benchmarks, 8 series: formulas with
1 or 2 hidden assignments and balanced literals: satisfiable but hard.

hgen* Submitted by E. Hirsch, 57 benchmarks, 4 series: generators based on hgen2
(last year winner)

gencnf Submitted by G. Dequen, 63 benchmarks, 7 series: k-cnf uniform generator at
treshold for k = 4–10.

uniform Submitted by L. Simon, 45 benchmarks, 5 series, a uniform generator for
k=3, one serie per constant ratio (only one serie at treshold).

3 First phase results

The first phase began on March 19th and ended on April 14th. One of the new
features of the SAT’03 competition was the ability for each competitor to follow
his solver via a web page that was updated daily. All the traces were available,
and suspicious launchs (due to hardware/network error, ...), detected by us or
by the competitors, were ran again. The two solvers compsat and marchxq were
found incorrect (“buggy”) during the first phase due to minor bugs. We present
here the result of their fixed version, compsat-fixed and marchxq-fixed. satzilla2-
fixed is a new version of satzilla2 with improved learning scheme.

In this section, we discuss the results of the solvers in each category. We
will not discuss here the results of the SAT subcategory in both the industrial
and handmade categories, since there are not enough benchmarks to draw any
conclusions. Those results are available on the competition website.

3.1 First phase on Industrials

One can note that there was many zchaff-like solvers this year (13 solvers, 17
variants, against 4 solvers last year). This can be explained by the huge interest
in the practical resolution of SAT in the EDA community since many of the
new solvers are coming from that community, and by the fact that zchaff was a
breakthrough in the community in the last two years. For instance, 3 out of 4 of
the solvers awarded last year were similar to zchaff (including the original).

The figure 1 illustrates the results of the complete solvers on all the bench-
marks of the industrial category. This kind of representation, used in the previous
competition report [26], allows to check the choice of the cpu timeout and to have
clues about solvers behaviors on all the benchmarks in a given category. Last
year winners in the category were zchaff and limmat. Those solvers end a group
of zchaff-like solvers leaded by forklift. If we take those solvers as the references
for state-of-the-art SAT solver in 2002 then it seems clear that some progress was
made in the industrial category (half of the submitted solvers are more efficient
than these progress witnesses!).

But the picture is not so clear. Let us take a look at berkmin62 curve. One
can note that not that many solvers are stronger than berkmin62. Let us recall
that the version of berkmin62 that enterred the SAT’02 competition had a bug
that prevented it to solve hundreds of benchmarks[26]. The version that entered
the SAT’03 was fixed. So it is reasonable to consider berkmin62 as a progress
witness for the year 2002. Thus, the progress made is not that important: three
solvers only performed better that berkmin62 and two of them are from the same
authors, one solver being a variant of one of the engine of berkmin62, while the
other one is a new solver that can be seen as an extension of berkmin62 with
binary clause reasoning.

So, the good point is that a lot of new solvers were proposed and showed
relatively good performances for their first public evaluation. But the pernicious
effect of the competition is that, in the run for good performances, many solvers
are very similar (zchaff-like).

3.2 First phase on Handmade

The figure 2 illustrates the results of the complete solvers on handmade bench-
marks. One solver, lsat, clearly shows a particular behavior. This solver doesn’t
implement only resolution, but can handle (even long) chains of equivalency
clauses and can more generally retrieve from a CNF some boolean function
on which it applies some simplifications [22]. That point gives it the ability to
quickly solve tricky formulas, commonly used in this category (where formu-
las are build to defeat resolution-based algorithm). Beside this very particular

0 50 100 150
0

100

200

300

400

500

600

700

800

900

1000 ←
 k

cn
fs

←
 tt

s
←

 fa
rs

ee
r

←
 x

qi
ng

tin
g

←
 ls

at
←

 m
ar

ch
sp

←
 m

ar
ch

tt
←

 m
ar

ch
xq

−f
ixe

d

←
 o

ks
ol

ve
r

←
 s

at
zil

la
2

←
 s

at
zil

la
2−

fix
ed

←
 s

at
zil

la
←

 o
pe

ns
at

←
 s

at
o

←
 lim

m
at

←
 z

ch
af

f
←

 jq
ue

st
2

←
 s

at
ni

k
←

 je
ru

sa
t1

a
←

 je
ru

sa
t1

c
←

 je
ru

sa
t1

b
←

 c
om

ps
at

−f
ixe

d

←
 s

at
zo

o0
←

 s
at

zo
o1

←
 o

ep
ir

←
 fu

ne
x

←
 b

m
sa

t
←

 b
er

km
in

62
←

 s
ie

ge
←

 b
er

km
in

56
1

←
 fo

rk
lift

#Solved

C
P

U
−

T
im

e
ne

ed
ed

 (
s)

kcnfs (17)
tts (20)
farseer (28)
xqingting (44)
lsat (46)
marchsp (63)
marchtt (67)
marchxq−fixed (73)
oksolver (75)
satzilla2 (82)
satzilla2−fixed (82)
satzilla (83)
opensat (94)
sato (101)
limmat (114)
zchaff (115)
jquest2 (116)
satnik (116)
jerusat1a (119)
jerusat1c (119)
jerusat1b (120)
compsat−fixed (123)
satzoo0 (123)
satzoo1 (124)
oepir (126)
funex (127)
bmsat (132)
berkmin62 (133)
siege (135)
berkmin561 (136)
forklift (143)

Fig. 1. Number of instances solved vs. CPU time for complete solvers on all industrial
benchmarks

solver, the figure shows relatively efficient solvers between marchxq-fixed and
satzoo1 on this category.

3.3 First phase on Random

Results for the two random categories are given on figures 3 and 4. On the first
figure, one can easily identify all complete solvers good for random instances
(between oksolver and satzilla2-fixed). The curves have a relatively slow growth
(certainly due to the fact that random instances scales smoothly), especially for
kcnfs, which seems to scale well. This is not the same picture for satzilla, which
present the same kind of curve than lsat on HandMade: a lot of benchmarks are
solved quickly, and then the curve have an important growth. On random SAT
instances, unitwalk and satzilla2 present the same kind of curves.

The case of satzilla The solver takes an unusual, “portfolio” approach to
the SAT problem. It uses machine learning models to select among a set of
existing SAT algorithms, and then runs the algorithm predicted to do best.
For satzilla 0.9, these include: 2clseq, limmat, jerusat, oksolver, relsat, sato,
satzrand, and zchaff. It then runs the algorithms with the lowest predicted run
time. The techniques for predicting run time of algorithms are described in [16].

0 20 40 60 80 100 120 140
0

100

200

300

400

500

600

700

800

900

1000 ←
 fa

rs
ee

r
←

 o
pe

ns
at

←
 x

qi
ng

tin
g

←
 o

ks
ol

ve
r

←
 k

cn
fs

←
 lim

m
at

←
 s

at
o

←
 b

m
sa

t
←

 fu
ne

x
←

 jq
ue

st
2

←
 b

er
km

in
62

←
 c

om
ps

at
−f

ixe
d

←
 fo

rk
lift

←
 je

ru
sa

t1
c

←
 o

ep
ir

←
 b

er
km

in
56

1

←
 z

ch
af

f
←

 tt
s

←
 m

ar
ch

xq
−f

ixe
d

←
 je

ru
sa

t1
b

←
 je

ru
sa

t1
a

←
 s

at
zo

o0
←

 m
ar

ch
tt

←
 m

ar
ch

sp
←

 s
at

ni
k

←
 s

at
zil

la
←

 s
at

zil
la

2
←

 s
at

zil
la

2−
fix

ed

←
 s

ie
ge

←
 s

at
zo

o1
←

 ls
at

#Solved

C
P

U
−

T
im

e
ne

ed
ed

 (
s)

farseer (14)
opensat (25)
xqingting (38)
oksolver (45)
kcnfs (51)
limmat (52)
sato (52)
bmsat (53)
funex (53)
jquest2 (57)
berkmin62 (60)
compsat−fixed (63)
forklift (63)
jerusat1c (63)
oepir (64)
berkmin561 (65)
zchaff (67)
tts (68)
marchxq−fixed (79)
jerusat1b (81)
jerusat1a (82)
satzoo0 (82)
marchtt (83)
marchsp (84)
satnik (88)
satzilla (89)
satzilla2 (90)
satzilla2−fixed (93)
siege (97)
satzoo1 (102)
lsat (128)

Fig. 2. Number of instances solved vs. CPU time for complete solvers on all handmade
benchmarks

The portfolio approach (with experimental results examining a different problem
domain) is elaborated in [15]. Hors Concours solver satzilla2 (submitted after
the deadline, on February 28) uses two additional complete solvers, eqsatz and
heerhugo. It also executes the autoSat algorithm for a short time before starting
any other computation, and is thus able to filter out easy satisfiable problems
(this point can explain the kind of curves we observed).

Because this approach is unusual and represent one of the main new approach
in this year contest, we conducted a few analysis on satzilla2-fixed to understand
how it behaves. We provide for each solver composing satzilla2 how many times it
was used and how many times it solved the benchmarks (number in parenthesis).
The missing solved benchmarks are due to AutoSAT.

– On industrial instances, it launched jerusat 13 (3) times, zchaff 64 (49) times,
eqsatz 1 (0) time, 2clseq 27 (4) times, satzrand 4 (0) times and limmat 2 (0)
times.

– For HandMade, the choices were jerusat 93 (42), relsat 1 (0), eqsatz 26 (6),
2clseq 5 (0), satzrand 39 (9), limmat 62 (1), oksolver 26 (1), heerhugo 7 (0)
and sato 10 (3).

– On random instances, the choices were jerusat 1 (1), zchaff 12 (2), eqsatz 18
(18), 2clseq 13 (1), satzrand 124 (37) and oksolver 35 (1). The choices were

0 20 40 60 80 100 120 140 160 180
0

100

200

300

400

500

600

700

800

900

1000 ←
 fa

rs
ee

r
←

 o
pe

ns
at

←
 jq

ue
st

2
←

 lim
m

at
←

 x
qi

ng
tin

g
←

 fu
ne

x
←

 c
om

ps
at

−f
ixe

d

←
 o

ep
ir

←
 je

ru
sa

t1
c

←
 b

m
sa

t
←

 je
ru

sa
t1

b
←

 s
ie

ge
←

 je
ru

sa
t1

a
←

 s
at

zo
o0

←
 b

er
km

in
62

←
 ls

at
←

 fo
rk

lift
←

 z
ch

af
f

←
 b

er
km

in
56

1

←
 s

at
o

←
 s

at
ni

k
←

 s
at

zo
o1

←
 o

ks
ol

ve
r

←
 m

ar
ch

xq
−f

ixe
d

←
 s

at
zil

la
←

 m
ar

ch
tt

←
 m

ar
ch

sp
←

 k
cn

fs
←

 s
at

zil
la

2
←

 s
at

zil
la

2−
fix

ed

#Solved

C
P

U
−

T
im

e
ne

ed
ed

 (
s)

farseer (6)
opensat (13)
jquest2 (23)
limmat (24)
xqingting (27)
funex (37)
compsat−fixed (39)
oepir (39)
jerusat1c (40)
bmsat (43)
jerusat1b (43)
siege (44)
jerusat1a (46)
satzoo0 (49)
berkmin62 (51)
lsat (52)
forklift (53)
zchaff (53)
berkmin561 (54)
sato (54)
satnik (64)
satzoo1 (67)
oksolver (96)
marchxq−fixed (119)
satzilla (121)
marchtt (128)
marchsp (131)
kcnfs (163)
satzilla2 (172)
satzilla2−fixed (173)

Fig. 3. Number of instances solved vs. CPU time for complete solvers on all random
benchmarks

different for each category and one may notice that zchaff was choosen 12
times on random instances (and even gave 2 results).

Note that eqsatz was launched 18 times on random problems and succeeded
each time. This is because the hardnm benchmarks from C. Moore contains
equivalency chains that can be solved in linear time by specific solvers such as
eqsatz of lsat. For such a reason, the behavior of satzilla2 on those “random”
benchmarks must be taken with care.

3.4 Solvers entering the second phase

This year, the three judges decided, from an anonymized version of the rankings
presented table 1 which solvers should enter the second phase of the competition.
Table 1 also emphasizes the solvers that were alone to solve at least one bench-
mark (so called State-Of-The-Art Contributor, SOTAC, in [27]) during the first
phase. In addition to the one reported in the tables, marchxq-fixed (Industrial)
and compsat-fixed (Industrial, HandMade) are also SOTAC.

3.5 The hardest benchmarks

The pool of benchmark remained unsolved during the first phase is available
on the web. We encourage developpers to focus on this set of hard bench-

0 50 100 150
0

100

200

300

400

500

600

700

800

900

1000 ←
 fa

rs
ee

r
←

 o
pe

ns
at

←
 jq

ue
st

2
←

 lim
m

at
←

 x
qi

ng
tin

g
←

 fu
ne

x
←

 c
om

ps
at

−f
ixe

d

←
 o

ep
ir

←
 je

ru
sa

t1
c

←
 b

m
sa

t
←

 je
ru

sa
t1

b
←

 s
at

zo
o0

←
 s

ie
ge

←
 je

ru
sa

t1
a

←
 b

er
km

in
62

←
 ls

at
←

 fo
rk

lift
←

 z
ch

af
f

←
 b

er
km

in
56

1

←
 s

at
o

←
 s

at
ni

k
←

 s
at

zo
o1

←
 q

in
gt

in
g

←
 o

ks
ol

ve
r

←
 s

at
zil

la
←

 m
ar

ch
tt

←
 m

ar
ch

sp
←

 m
ar

ch
xq

−f
ixe

d

←
 k

cn
fs

←
 s

at
ur

n
←

 u
ni

tw
al

k
←

 s
at

zil
la

2
←

 s
at

zil
la

2−
fix

ed

#Solved

C
P

U
−

T
im

e
ne

ed
ed

 (
s)

farseer (6)
opensat (11)
jquest2 (20)
limmat (21)
xqingting (25)
funex (34)
compsat−fixed (36)
oepir (36)
jerusat1c (37)
bmsat (40)
jerusat1b (40)
satzoo0 (41)
siege (41)
jerusat1a (42)
berkmin62 (48)
lsat (49)
forklift (50)
zchaff (50)
berkmin561 (51)
sato (51)
satnik (53)
satzoo1 (58)
qingting (73)
oksolver (78)
satzilla (89)
marchtt (98)
marchsp (100)
marchxq−fixed (100)
kcnfs (112)
saturn (127)
unitwalk (139)
satzilla2 (141)
satzilla2−fixed (141)

Fig. 4. Number of instances solved vs. CPU time for all solvers on SAT random bench-
marks

marks. We have 174 benchmarks (from 16 series) in the Industrial category
(mean (min–max) sizes: #clauses=222811 (7814–3113540), #variables=61322
(2269–985042), #literals=627908 (21206–7976612)), 165 benchmarks (from 18
series) for the HandMade one (#clauses=54422 (832–630000), #variables=4518
(75–270000), #literals=263992 (2818–1350000)) and 91 (from 17 series) for the
Random category (sizes: #clauses=7838 (391–36000), #variables=286 (38–700),
#literals=61515 (888–360000)). Among the unsolved benchmarks, we often find
large industrial formulas and, in the random category, k-cnf with large k.

4 Second phase

We selected 269 benchmarks that went to second phase. To give an idea of their
sizes (you can compare numbers with the one in the previous section 3.5), we
selected 72 benchmarks (in all the 16 series) in the Industrial category (sizes:
#clauses=324353 (7814–3113540), #variables=92473 (2269–985042), #literals=932932
(21206–7976612)), 137 (in all the 18 series) in the HandMade category (sizes:
#clauses=52561 (832–630000), #variables=6027 (75–270000), #literals=238815
(2818–1350000)) and 60 (in all the 17 series) in the Random category (size :
#clauses=6258 (391–30960), #variables=329 (38–700), #literals=46908 (888–
309600)).

Solvers #series #benchs (comments) Solvers #series #benchs (comments)

Industrial
Complete solvers on all benchs All solvers on SAT benchs

forklift 34 143 (SOTAC) forklift 9 33
berkmin561 32 136 berkmin62 8 32
satzoo1 31 124 zchaff 8 31
oepir 30 126 oepir 8 31
funex 29 127 (SOTAC) jerusat1b 8 31
satnik 29 116 funex 8 31
jquest2 29 116 satnik 8 30
zchaff 29 115 (SAT’02 winner) limmat 8 30 (SAT’02 winner)
jerusat1b 28 120 satzoo1 7 30
limmat 28 114 jquest2 7 29

HandMade
Complete solvers on all benchs All solvers on SAT benchs

jerusat1b 22 81 satzoo1 11 37 (SOTAC)
satzoo1 21 102 jerusat1b 11 35
satzilla 21 89 satzilla 11 25
satnik 20 88 forklift 10 30 (SOTAC)
marchsp 19 84 oepir 9 31 (SOTAC)
lsat 15 128 (SOTAC) satnik 9 30

berkmin561 9 30 (v62 was SAT’02 winner)
saturn 7 29 (SOTAC)

Random
Complete solvers on all benchs All solvers on SAT benchs

kcnfs 25 163 (SOTAC) kcnfs 18 112
satzilla 19 121 unitwalk 15 139 (SOTAC)
marchsp 18 131 saturn 14 127
oksolver 16 96 satzilla 14 89
satnik 13 64 marchsp 13 100

Table 1. Ranking of solvers entering the second phase.

4.1 Winners: the solvers!

The table 2 summarizes the whole second phase of the contest. Here, the cpu
timeout was set to 2 hours (instead of 15mn). The 4 winners are in bold face in
each category. Briefly, forklift won both (SAT+UNSAT and SAT) Industrial
categories, satzoo1 won both HandMade categories. kcnfs won the Random
SAT+UNSAT category and unitwalk the Random SAT category.

If this is not a surprise for forklift, according to the results of the first phase.
Now, the fact that kcnfs won a price may be a good indicator that our par-
titioning may be not so bad. Simply because kcnfs was devoted to solve such
instances. We also want to point out that this is the first time an incomplete
solver (unitwalk) win the competition. Last year, oksolver won both the Ran-
dom categories prizes. oksolver was even not qualified for the second phase on
Random SAT instances (it was on SAT+UNSAT).

At last, one have to point out that winners are often determined by very
small difference. This is not really surprising since the shapes of curves are
almost vertical on figures 1–4 for these solvers, but may be disappointing since
after one month of contest, the winner was determined on its performances on
a very few benchmarks.

Solver #benchs Solver #benchs Solver #benchs

Industrial Complete Industrial SAT HandMade Complete
forklift 12 forklift 4 satzoo1 9
berkmin561 11 jerusat1b 3 lsat 7
satzoo1 5 satnik 3 satzilla 6
jerusat1b 5 funex 1 satnik 3
satnik 4 zchaff 1 jerusat1b 1
zchaff 4 oepir 1 marchsp 0
funex 3 berkmin62 1
oepir 1 satzoo1 1
jquest2 0 limmat 0
limmat 0 jquest2 0

Random Complete Random SAT HandMade SAT
kcnfs 12 unitwalk 12 satzoo1 5
satzilla 6 kcnfs 4 satzilla 3
oksolver 4 saturn 2 forklift 3
marchsp 3 satzilla 2 berkmin561 1
satnik 0 marchsp 0 saturn 0

oepir 0
satnik 0
jerusat1b 0

Table 2. Ranking of solvers after the second phase

4.2 Winners: the benchmarks

In each categories, we selected the smallest benchmarks to use during the second
phase, according to their number of literals, in order to award the smallest
unsolved benchmarks in both SAT and UNSAT categories.

The winner for the smallest unsat benchmark was random/hirsch/hgen8/-

hgen8-n260-01-S1597732451, a benchmark submitted by E. Hirsch. It was re-
named sat03-885 during the contest. This unsatisfiable benchmark contains 391
clauses, 260 variables and only 888 literals. In comparison to last year results, the
smallest UNSAT instance moved from the HandMade to the Random category,
which can be explained by two reasons. First, lsat has droped away, during the
first stage, all small benchmarks based on equivalency clauses and second, the
category of this benchmarks may not be the good one.

On the SAT category, we didn’t award any benchmark. The winner was
random/simon/sat02-random/hgen2-v400-s161064952 (renamed sat03-1681 this year),
a benchmark submitted by E. Hirsch last year. It contains 1400 clauses, 400 vari-
ables and 4200 literals. That benchmark was solved in the second phase last year,
but not this year. Such a phenomenon may be due to bad luck this year for ran-
domized instances, or simply to the re-shuffling of the instance. We’ll discuss
this kind of problem in the section 5.2.

5 Discussion

5.1 Other rankings

To check the strongness of the competition final results, one may wants to try
other methods to rank solvers and to compare the rankings. This is also a way
to analyse the results of the first phase. In the contest, we tried to forget about

Solver Total Time (s) #solved benchs Solver Total Time (s) #solved benchs

Complete on Industrials Complete on HandMade
forklift 171240 143 lsat 207371 128
siege 175168 135 satzoo1 241664 102
berkmin561 176088 136 satnik 249446 88
bmsat 178445 132 siege 250043 97
berkmin62 179121 133 marchtt 250711 83

Complete on Random All On SAT Random
satzilla2 147208 172 satzilla2 35402 141
kcnfs 165655 163 unitwalk 38572 139
unitwalk 166372 139 saturn 52136 127
saturn 179936 127 kcnfs 67493 112
marchsp 192688 131 marchsp 83030 100

Table 3. Top-5 ranking of solvers à la satex

the cputime, by counting only the number of series and benchmarks solved. Of
course the cpu time had a direct impact on the competition due to the timeout,
but it is important to try to characterize efficient solvers, in term of cpu time.

Ranking à la satex One way to rank solvers is to use cumulative cpu time,
as it is done in SatEx [25]: just count the total cpu time needed for one solver
to solve the whole category of benchmarks, using the timeout as the default
penalty. Note that the timeout was 15 mn, which is not a big penalty, so a fast
solver can be ranked above a solver that solved more benchmarks.

Table 3 summarizes the top-5 solvers in each category that we studied in
this paper. Forklift is still a clear winner (siege was hors-concours) on Industrial
benchmarks. On HandMade benchmarks, such a ranking would have awarded
lsat instead of satzoo1. Lsat was able to quickly solve a large amount of bench-
marks without search, but when the DLL engine of lsat was needed (on hard
instances like in the second phase), lsat was not able to beat satzoo1. On random
benchmarks, satzilla2 (which is hors-concours) would be ranked first, which is
in part due to the 18 hardnm benchmarks outlined before.

Relative efficiency of solvers One of the hard thing to handle for ranking
solvers is that only partial information is available. We have to use a cputime
timeout and, what ever value we choose, we’ll never have a complete picture of
all solvers cpu time on all benchmarks. One possible way is to compare only
pairs of solvers (X,Y) on the subset of benchmarks they both solves (if s(X)
is the set of benchmarks solved by X, then we compare X and Y on their
respective performances on the set s(X) ∩ s(Y)). When doing this, we have a
strong way of comparing the relative efficency (RE) of X and Y : re(X, Y) =
s(X) ∩ s(Y)/s(Y) gives the percentage of instances of Y that X solves too. Let
us write now cpu(X, b) the cpu time needed for X to solve all the benchmarks
in b, without any timeout. Because there was a timeout in the competition,
only cpu(X, s′), with s′ ⊆ s(X) are defined here for the solver X. Now, we
can compare the relative efficiency of X with Y by computing crr(X, Y) =
cpu(X, s(X) ∩ s(Y))/cpu(Y, s(X) ∩ s(Y)). This last measure is called here the

cputime reduction ratio (CRR), and means that, on their common subset of
solved benchmarks, X needs only crr(X, Y) percent of the time needed by Y .
Now, to summarize all the possible values, we average these two measures over
all the possible values for Y , while keeping X fixed.

In the Industrial (complete) category, we have the following values for re :
forklift (98.9%), berkmin561 (98.7%), siege (98.6%), berkmin62 (98.4%), oepir
(97.6%), funex (97.4%), bmsat (97.2%), compsat-fixed (96.8%), satzoo0 (96.4%)
and satzoo1 (96.3%). The crr values are forklift (23%), siege (28%), bermin561
(46%). funex and oepir needs only 55% of the time of the other solvers. The
crr values of solvers then jumps to more than 70% for the other solvers. It
is interesting to remark that both forklift and siege are very efficient solvers
(crr < 25% and an impressive value for re). Satzoo0 is also interesting because
it has a high re and a crr at 164%. This is the same kind of remark for jquest2,
which has a re of 94.5% and a crr at only 388% (certainly due to the java
penalty). In a sense, we think that such a measure may emphasize a robust
solver (if s(X) is large enough): zchaff has a re of 91.1% and a crr of 87%, and
limmat a re of 93.9% and a crr of 138%. Thus, jquest2 and limmat are slower
than zchaff, but can on average solve more benchmarks.

In the HandMade (complete) category, the re values are satzoo1 (88.9%),
siege (88.6%), satnik (86.3%), satzilla2-fixed (86.2%), satzoo0 (84.9%), satzilla2
(84.9%), jerusat1a (83.8%), jerusat1b (83.2%) and satzilla (83.1%). It then drops
to less than 73% for the other solvers. The best crr are for lsat (56%), satzoo1
(83%), marchxq-fixed (90%) and forklift (97%). All other solvers have a ratio
greater than 100%. For information, lsat has a re of 72.6%. This is a low value,
but this kind of measure can be misleading: in this case, lsat did not solve
benchmarks solved by other solvers, which is reflected by the small number of
series solved, while solved quickly others (which is reflected by the total number
of benchmarks solved, being SOTAC, etc).

In the Random (Complete) category, we have the following re: satzilla2-fixed
(95.4%), satzilla2 (95.3%), marchxq-fixed (90.4%), marchsp (83.3%), marchtt
(84.0%) and kcnfs (83.9%). The percentage then jumps to less than 75%. The
best crr are satzilla2-fixed (only 26%), satzilla2 (27%), kcnfs (39%), marchxq-
fixed (47%). The ratio then falls to more than 88% (with oksolver).

At last, in the Random (SAT) category, we have the following re: satzilla2
(92.8%), satzilla2-fixed (92.8%), marchxq-fixed (87.0%), marchsp (82.2%), marchtt
(80.1%) and kcnfs (78.9%). The best crr are different here: unitwalk, have only
a re of 71.4% but a very remarkable crr of 6%! saturn has a re of 71.1% and a
crr of 28%. That means that unitwalk and saturn solve problems different from
other solvers, and solve the common problems very quickly. In the order, after
these two incomplete solvers, the crr are sazilla2-fixed and satzilla2 (29%) and
kcnfs (81%). The crr then falls to more than 1OO%. In some sense, unitwalk
present the same kind of results than lsat: a low re value that indicates here an
original method. If crr < 1 then this method is fast, and, at last, the method is
interesting if s(x) is large enough. This is clearly the case for lsat and unitwalk.

0 36 72 109 145 181 217 253

satzilla2
satzilla2−fixed

satzilla
marchsp
marchtt

marchxq−fixed
oksolver

kcnfs
berkmin62

funex
oepir

compsat−fixed
bmsat

jerusat1a
jerusat1b
jerusat1c

berkmin561
forklift

limmat
jquest2

siege
zchaff

sato
satzoo0

satnik
satzoo1
farseer

amvo
xqingting

tts
opensat

lsat
qingting
unitwalk

saturn

S
ol

ve
rs

Distance (#Benchs over 993)

 344
 348
 293
 278
 278
 271
 216
 231
 244
 217
 229
 225
 228
 247
 244
 222
 255
 259
 190
 196
 276
 235
 207
 254
 268
 293
 48
 12
 109
 88
 132
 226
 102
 174
 178

 349, 343

 286, 270

 257, 234

 239, 215

 270, 244

 243, 203

 208, 178

 259, 202

 194, 158

 267, 199

 262, 208

 52, 8

 293, 189

 285, 237

 313, 188

 314, 233

 315, 168

 352, 287

 329, 168

 259, 183

 317, 231

 196, 97

 111, 8

 344, 143

 371, 143

 154, 7
 206, 7

 333, 169

 403, 156

 425, 129

 287, 7

 437, 3

 536, 2

 563, 2

(D)

(E)

(C)

(A)

(B)

Fig. 5. Clusters of all solvers on all benchmarks. Solver that closely solves sets of
benchmarks are close together in the cluster. The height of nodes in the tree indicates
the average distance of the two clusters at each considered branch of the tree. Number
at the left indicates the number of solved instances for each solver, and the couple of
number at each cluster link indicates respectively the number of common benchmarks
solved by at least one member of the cluster and the number of benchmarks solved by
all the members of the cluster. 5 main cluster A–E can be easily identified

Clustering of solvers according to their performances We automatically
clusterized the solver according to the set of common benchmarks they solved.
The clusters are represented with a tree in figure 5.

Related solvers all belong to the same cluster. For instance, different versions
of the same solver are very close in the cluster (see marchXX, jerusat1X and
satzillaX). The cluster (A) denotes incomplete solvers. The cluster (B) contains
only one solver: the singular lsat. The cluster (C) is made of medium strength
complete solvers (the number of common solved benchmark is very low due to
amvo’ performances). Then we have this large cluster (D) of zchaff-like solvers.
This cluster contains solvers that are good on industrial benchmarks. One may
remark here that 143 benchmarks are solved by all the solvers of (D), while 371
benchmarks (over 993) are solved by at least one of these solvers. All the solvers
in this cluster have very close performances. In the last cluster, noted (E), one
can indentify the complete solvers strong on random instances.

5.2 Randomized or not: the lisa syndrom

It was brought to the fore in [17] that solvers may have drastically different
behaviors on a range of problems generated from one original benchmark by
randomly shuffling both its clauses and renaming its literals. The shuffler used
for the competition generates members of the PC-class of [17]. However, this
very important addressed in the competition. This year, the same benchmark
(a SAT’02 challenge called lisa) was placed in two different categories by error.
Before we detected the problem, it was shuffled twice (one for lisa in Industrial
and one for lisa in HandMade with different seeds) and solvers ran on both
instances. Here are some examples of solvers that showed different behaviors on
those two benchmarks (“–” stands for unsolved): jerusat1a: (–, 40.71) ; jerusat1b
(236.85, –) ; oepir (–, 12.62) ; siege (67.43, –), satzoo1 (–, 287.12) and satzilla
(196.8, 727.52).

Such a result can question the validity of the competition. However, such a
thorny problem may be smoothed by the large number of benchmarks used and
we strongly trust the main picture provided by the rankings we reported for
the first phase. This is not the case for the second phase. Considering the small
number of benchmarks solved, beeing lucky can make the difference.

5.3 Progress or not?

One of the most important question when assessing the results of the competition
was whether or not substantial progress was made. Our first thought was “yes”,
since several benchmarks unsolved during 6 hours last year were solved within
15 mn this year.

Let’s take a closer look at each category. Progress on the Industrial category
was already discussed in section 3.1. In the handmade category, lsat shown very
good performances on many structured benchmarks. However, lsat participated
last year and became hors concours because of a bug. This year version is mainly
last year version without the bug. So it is hard to see here any real progress since
last year.

In the random category, the picture is a bit different. Some new solvers were
submitted this year. Last year winner, oksolver, was outperformed in the satis-
fiable category. The most interesting thing concerning that category is the pres-
ence of the hors concours satzilla2, a portfolio solver, that compared favorably
against the awarded complete solver and did slightly better that the incomplete
solver awarded for satisfiable benchmarks.

5.4 Benchmark categories: back to the roots

Some improvements were made concerning the way solvers were evaluated this
year: only the best variant of a given solver was eligible for the second phase,
solver submitters were able to follow almost in real time their solver during the
first phase of the competition, the judges chose the solvers that should enter
the second phase, which was more flexible and fair than using an arbitrary rule

(top 5 solvers..), etc. But nothing really changed regarding the way we handled
benchmarks. We need to focus on this issue for the next year competition.

The idea of creating three categories of benchmarks, namely industrial, hand-
made and random, was to cover the different interests of researchers in the
practical resolution of SAT. The industrial category was aimed to address the
practical resolution of SAT problems for SAT-based reasoning engines. Ideally,
that category should reflect the strengths or weaknesses of the solvers as a SAT
component, in a “real/industrial” setting. Bounded model checking[5, 4] or more
generally all the applications from the Electronic Design Automation commu-
nity[19], planning[12], cryptography[20] were good candidates for such category.
Up to now, we received mainly benchmarks from the EDA community. Those
benchmarks really reflected the kind of problems to be solved by an embedded
SAT engine. Unfortunately, since we shuffled the benchmarks, we did not really
evaluate the solvers in “real conditions”. The order of the clauses, the identi-
fiers of the variables may provide some structural information about the initial
problem and some solvers built to solve those kind of problems were designed to
handle that information. By shuffling the benchmarks, we hide that information.
Thus a solver can have a very different behaviour during the competition and
“in situ”, which is in contradiction with one of the aim of the contest. We have
three solutions. First, we keep all things like this and we let submitters explicitly
write heuristics in their solver that take shuffling into account. If this allows to
emphasize the existence of implicits heuristics based on the syntactical order of
the formula (which is a good point), this kind of solution is weird in some sense:
solvers will spend time trying to rearrange the formula! We can also avoid shuf-
fling for this category, but then solvers may be too much tuned for benchmarks,
casting doubts on the results on challenging, publicly available, benchmarks.
The last choice may be to launch the solvers on the original benchmark and X
shuffled benchmarks of the same benchmarks (this solution may also adresses
the lisa syndrom).

The random category was designed to evaluate the progress made on a class
of theoretically well known and hard (NP-complete) problems: random k-sat.
There are not that many ways to generate random k-SAT problems, so most
of the benchmarks used for that category where based on some uniform k-SAT
generators. However, we received some generators able to build problems look-
ing syntactically like random uniform problems, but are forced SAT or UNSAT
(like all the generators from Edward Hirsch). The question is: were those gener-
ators in the right category? Even worst is the case of the hardnm benchmarks
related previously. Theoretical and practical work on random k-SAT is based
on uniform k-sat. Furthermore, some problems such as quasigroup with holes,
or clusters of random k-SAT formulas were in the handmade category. So the
random category would better be renammed “uniform random” category and all
the non uniform random generators should move to another category. Wether
that category should be a new one or should be the handmade category is not
yet decided.

Industrial Handmade Random
solver #series #benchs solver #series #benchs solver #series #benchs
forklift 30 110 satzilla 13 64 kcnfs 9 51
berkmin561 29 105 siege 13 60 satzilla2-fixed 6 32
siege 29 104 satnik 13 58 satzilla 6 32
berkmin62 29 101 jerusat1a 13 49 marchsp 6 31
bmsat 28 101 jerusat1b 13 46 marchtt 6 30

satzoo1 12 65 marchxq-fixed 4 19
lsat 11 107

Table 4. Top ranking of solvers on hypothetical UNSAT categories. Please do notice that hors-
concours solvers appear here.

The handmade (crafted) category was aimed to point out new techniques
not based on resolution. Finding an efficient technique to tackle SAT problems
not based on resolution is one of the ten propositional challenges proposed in
[24]. That category was also a reminder that if some solvers can solve huge
benchmarks in the industrial category, some small benchmarks are still out of
reach of those solvers. The solvers awarded so far in that category (zChaff,
Berkmin and satzoo) are using resolution. So the category is awarding very
efficient solvers (typically with the greatest number of decisions per second)
rather than clever ones. Note that this year, an hybrid solver recovering potential
structural knowledge and using it to simplify the initial problem solved the
greatest number of problems in that category, but was not awarded. Awarding
the most efficient solver is of interest, pointing out “clever” solvers would be a
plus for the competition.

At last, we observed in both industrial and handmade category very few
satisfiable benchmarks. One way to solve this problem is to filter satisfiable
benchmarks from a pool of benchmarks submitted to the competition. In that
case the benchmarks are needed long before the solvers, which means to change
the way we benchmarks are submitted. Another solution is to ask benchmarks
submitters a balanced number of SAT and UNSAT benchmarks.

An UNSAT category? It is clear that incomplete (1-sided SAT) solvers can
only be compared on the basis of SAT instances. A question that could be raised
is that, because we have the complete (SAT+UNSAT) and the SAT subcate-
gories, this choice may disadvantages solver that are only good on UNSAT in-
stances. Furthermore, it is possible that, in the next few years, 1-sided-UNSAT
solvers (that can only solve UNSAT instances) may arise. For both reasons,
we decided to simulate the result of the first phase on a new UNSAT subcat-
egory. The results are reported on table 4. They are similar to the results of
SAT+UNSAT categories on Industrial and Handmade instances. This may be
due to the little number of SAT instances in these categories. However, on Ran-
dom instance, we can see that the marchXX family of solvers are very close now
to the satzillaX family. This is certainly due to the fact that satzilla performs
a local search of the solution and quickly solves easy SAT instances. This ad-
vantage over the marchXX solver is now over and seems to prove the relative

efficiency of the marchXX solvers on UNSAT Random instances, which was not
clear in the SAT+UNSAT results.

6 Summary of proposals for SAT’04 competitions

Despite the huge amount of data collected during the contest, it is impossible
to really understand why a solver is better than another. In order to empirically
study solvers (e.g. find hypothesis on their behaviour, ...), we will probably
ask submitters next year to output statistics about their runs. XML output
format could be great for automated analysis of results (each submitter may
then provide its own ontology) but we are thinking of something even simpler.
Such information may lead to identify the solver that explore the smallest search
space, the fastest solver on unit-propagation, ... and then to begin to really
understand experimentally what’s going on.

Now, one of the problem this year was to choose the right category for all
benchmarks. A lot of different solutions exist. First, one could simply use the
huge amount of data in the first phase to automatically (e.g. statistically) clus-
terizes the benchmarks into different categories. This is for instance done by
the authors of satzilla that compute 60 polynomial time features per instance
to decide which solver to use on which benchmark. However, we may have a
large number of different categories and we think that is very usefull to keep the
process in the hands of human. An automatic partitionning would imply that
a given bench may change of category from one year to another one. Moreover,
the original notion of categories is somewhat well understood and corresponds to
some expert knowledge about benchmarks. Another solution would be to ask for
the help of judges to classify benchmarks, according to some description given
by the author.

How to “officially” point out new (promising) methods? The quest for fast-
solvers is the pernicious effects of the contest and we have seen that this year,
not so much new methods have been proposed. Because one of the aim of the
contest was to promote new clever methods, it could be nice to have some kind
of special prizes, given by the judges to any solver, based on the analysis of the
first phase results. Of course, this solver may not be the fastest and the more
efficient one, but should be the most “promising” one.

The second phase is also a point which may be questionned. We have seen
that winners may simply be lucky on a very few instances. In some sense, it is
frustrating to spend years of cpu time and to determine the winner on its perfor-
mances on less than 5 instances (where luck can take a large part). Moreover, all
the important data are gathered during the first phase. So, could we reconsider
the second phase? We are thinking of two alternative solutions: determine the
winner according to its performances on the first phase or using some kind of
tournament in the second phase, where each step would ensure a clear winner
between 2 solvers.

Briefly, a lot of other points may be discussed before next year competition:

– To begin the competition earlier, just discard solvers not complying with the
input/output requirements.

– Do not run 3 time randomized solvers since deterministic olvers can be lucky
too (cf the lisa syndrom).

– Collect benchmarks in a different way: we need more control over benchmark
submission in order to ensure a meaningful competition.

– Allow benchmarks submitters to follow “live” the solvers on their bench-
marks.

The most important issue for next the next competition will be the notion
of classes of benchmarks instead of just one instance, to obtain strong result on
solvers performances. A reasonable solution is to run the solvers on the original
benchmarks (without shuffling them) and on a set of X shuffled version of that
benchmarks, X depending on the number of benchmarks, solvers and computers
available. Such approach provides a view of the solvers “in situ” and assesses
their robustness.

7 Conclusion

The competition was exciting and worthwhile. We presented in this paper a
number of different views and analysis based on the data gathered during the
first phase. Many new solvers were submitted this year, a majority of them were
zchaff-like solvers. There was no outstanding improvements compared to last
year, but a reasonable set of strong solvers for “industrial” benchmarks is now
available. Forklift, which inherits from berkmin62, leads those solvers. In the
handmade category, lsat demonstrated an interesting behavior (a former version
participated to SAT’02 but was incorrect). Satzoo showed better performances
in terms of diversity of benchmarks and scalability. In the random category, the
warded solvers are not a surprise: the solver kcnfs in the complete category, the
incomplete solver unitwalk in the satisfiable category.

The most interesting result of the competition is the behavior of the portfollio
algorithm satzilla, which compared favourably with the solvers awarded in the
random category. Wether this result can be replicated in the other categories is
an interesting challenge.

Next year, a new competition will be organized in conjunction with SAT2004,
in Vancouver. We showed in this paper is that the competition is now mature
enough to fulfill three main goals: (1) motivate the field, (2) promote new solvers
and hard benchmarks and (3) learn from the observation of solvers behaviors.

Acknowledgements

We especially want to thanks our three judges, John Franco, Hans van Maaren
and Toby Walsh for their involvement in every phases of the competition. Au-
thors would also like to thanks the “Laboratoire de Recherche en Informatique”

(LRI, Orsay, France) and the “Dipartimento di Informatica Sistemica e Telem-
atica” (DIST Genoa, Italy) for providing us with clusters of machines. At last,
we thank all the authors of solvers and benchmarks for their participation and
their effort to make their solver I/O compliant with our format. Without them
there would be no competition at all!

References

1. Sixth International Conference on Theory and Applications of Satisfiability Testing,
S. Margherita Ligure - Portofino (Italy), May 2003.

2. Nadel Alexander. Backtrack search algorithms for propositional satisfiability: Re-
view and innovations. Master’s thesis, Hebrew University of Jerusalem, November
2002. please email alikn@hotmail.com to receive an electronic copy of this work.

3. Gilles Audemard, Daniel Le Berre, Olivier Roussel, Inês Lynce, and Jo ao Mar-
ques Silva. OpenSAT: An Open Source SAT Software Project. In Sixth Interna-
tional Conference on Theory and Applications of Satisfiability Testing [1].

4. A. Biere, A. Cimatti, E.M. Clarke, O. Strichman, and Y. Zhu. Highly Dependable
Software , volume 58 of Advances In Computers, chapter Bounded model checking.
Academic Press, 2003.

5. Armin Biere, Alessandro Cimatti, Edmund M. Clarke, M. Fujita, and Y. Zhu.
Symbolic model checking using SAT procedures instead of bdds. In Proceedings of
Design Automation Conference (DAC’99), 1999.

6. Koen Claessen and Niklas Srensson. Finite model generation for first order logic
using propositional satisfiability. Submitted for publication.

7. Gilles Dequen and Olivier Dubois. Renormalization as a function of clause lengths
for solving random k-sat formulae. In Proceedings of Fifth International Symposium
on Theory and Applications of Satisfiability Testing, pages 130–132, 2002.

8. Olivier Dubois and Gilles Dequen. A backbone-search heuristic for efficient solving
of hard 3-sat formulae. In Proceedings of the Seventeenth International Joint Con-
ference on Artificial Intelligence (IJCAI’01), Seattle, Washington, USA, August
4th-10th 2001.

9. Niklas Een and Niklas Srensson. Temporal induction by incremental sat solving.
Submitted for publication.

10. E. Goldberg and Y. Novikov. BerkMin: A fast and robust SAT-solver. In Design,
Automation, and Test in Europe (DATE ’02), pages 142–149, March 2002.

11. E. A. Hirsch and A. Kojevnikov. UnitWalk: A new SAT solver that uses local
search guided by unit clause elimination. PDMI preprint 9/2001, Steklov Institute
of Mathematics at St.Petersburg, 2001. A journal version is submitted to this issue.

12. Henry A. Kautz and Bart Selman. Pushing the envelope : Planning, propositional
logic, and stochastic search. In Proceedings of the Twelfth National Conference on
Artificial Intelligence (AAAI’96), pages 1194–1201, 1996.

13. O. Kullmann. Heuristics for SAT algorithms: Searching for some foundations,
September 1998. 23 pages, updated September 1999 w.r.t. running times, url =
http://cs-svr1.swan.ac.uk/ csoliver/heur2letter.ps.gz.

14. Daniel Le Berre, Laurent Simon, and Armando Tachella. Challenges in the QBF
arena: the SAT’03 evaluation of QBF solvers. In Proceedings of SAT2003, 2003.
submitted.

15. K. Leyton-Brown, E. Nudelman, G. Andrew, J. McFadden, and
Y. Shoham. A portfolio approach to algorithm selection. In Proceed-
ings of IJCAI’03, 2003. A full version of this paper is available from
http://robotics.stanford.edu/ kevinlb/boosting.pdf, and is under review.

16. K. Leyton-Brown, E. Nudelman, and Y.Shoham. Learning the empirical hardness
of optimization problems: The case of combinatorial auctions. In Proceedings of
CP’02, 2002.

17. X. Y. Li, M.F. Stallmann, and F. Brglez. QingTing: A Fast SAT Solver
Using Local Search and Efficient Unit Propagation. In Sixth International
Conference on Theory and Applications of Satisfiability Testing [1]. See also
http://www.cbl.ncsu.edu/publications/, and http://www.cbl.ncsu.edu/-

OpenExperiments/SAT/ .
18. Inês Lynce and Jo ao Marques Silva. On implementing more efficient data struc-

tures. In Sixth International Conference on Theory and Applications of Satisfia-
bility Testing [1].

19. Joo P. Marques-Silva and Karem A. Sakallah. Boolean Satisfiability in Electronic
Design Automation. In Proceedings of the IEEE/ACM Design Automation Con-
ference (DAC), pages 675–680, June 2000.

20. Fabio Massacci. Using walk-sat and rel-sat for cryptographic key search. In Pro-
ceedings of the Sixteenth International Joint Conference on Artificial Intelligence
(IJCAI’99), pages 290–295, Stockholm, Sweden, July 31-August 6 1999. Morgan
Kaufmann.

21. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: En-
gineering an efficient SAT solver. In Proceedings of the 38th Design Automation
Conference (DAC’01), pages 530–535, June 2001.

22. R. Ostrowski, E. Grégoire, B. Mazure, and L. Sais. Recovering and exploiting
structural knowledge from cnf formulas. In Proc. of the Eighth International Con-
ference on Principles and Practice of Constraint Programming (CP’2002), LNCS,
pages 185–199, Ithaca (N.Y.), September 2002. Springer.

23. S. D. Prestwich. Randomised backtracking for linear pseudo-boolean constraint
problems. In Proceedings of Fourth International Workshop on Integration of AI
and OR techniques in Constraint Programming for Combinatorial Optimisation
Problems, 2002.

24. Bart Selman, Henry A. Kautz, and David A. McAllester. Ten challenges in propo-
sitional reasoning and search. In Proceedings of the Fifteenth International Joint
Conference on Artificial Intelligence (IJCAI’97), pages 50–54, 1997.

25. Laurent Simon and Philippe Chatalic. SATEx: a web-based framework for
SAT experimentation. In Henry Kautz and Bart Selman, editors, Electronic
Notes in Discrete Mathematics, volume 9. Elsevier Science Publishers, June 2001.
http://www.lri.fr/ simon/satex/satex.php3.

26. Laurent Simon, Daniel Le Berre, and Edward E. Hirsch. The sat2002 competition
report. Annals of Mathematics and Artificial Intelligence, 2003. Special issue for
SAT2002, to appear.

27. Geoff Sutcliff and Christian Suttner. Evaluating general purpose automated theo-
rem proving systems. Artificial Intelligence, 131:39–54, 2001.

28. Hantao Zhang. SATO: an efficient propositional prover. In Proceedings of the
International Conference on Automated Deduction (CADE’97), volume 1249 of
LNAI, pages 272–275, 1997.

29. L. Zhang, C. F. Madigan, M. W. Moskewicz, and S. Malik. Efficient conflict
driven learning in a Boolean satisfiability solver. In International Conference on
Computer-Aided Design (ICCAD’01), pages 279–285, November 2001.

